Efficient high degree polynomial root finding using GPU

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backward stability of polynomial root-finding using Fiedler companion matrices

Computing roots of scalar polynomials as the eigenvalues of Frobenius companion matrices using backward stable eigenvalue algorithms is a classical approach. The introduction of new families of companion matrices allows for the use of other matrices in the root-finding problem. In this paper, we analyze the backward stability of polynomial root-finding algorithms via Fiedler companion matrices....

متن کامل

Polynomial Root-Finding Algorithms and Branched Covers

Introduction. The problem of devising optimal methods for numerically approximating the roots of a polynomial has been of interest for several centuries, and is far from solved. There are numerous recent works on root-finding algorithms and their cost, for example, the work of Jenkins and Traub [JT70], Renegar [Ren87], Schönhage [Sch82], and Shub and Smale [SS85, SS86, Sma85]. This list is far ...

متن کامل

Root-finding and Root-refining for a Polynomial Equation

Polynomial root-finders usually consist of two stages. At first a crude approximation to a root is slowly computed; then it is much faster refined by means of the same or distinct iteration. The efficiency of computing an initial approximation resists formal study, and the users rely on empirical data. In contrast, the efficiency of refinement is formally measured by the classical concept q whe...

متن کامل

TR-2014011: Real Polynomial Root-Finding: New Advances

Univariate polynomial root-finding is both classical and important for modern computing. Frequently one seeks just the real roots of a polynomial with real coefficients. They can be approximated at a low computational cost if the polynomial has no nonreal roots, but typically nonreal roots are much more numerous than the real ones. We dramatically accelerate the known algorithms in this case by...

متن کامل

Accurate polynomial root-finding methods for symmetric tridiagonal matrix eigenproblems

In this paper we consider the application of polynomial root-finding methods to the solution of the tridiagonal matrix eigenproblem. All considered solvers are based on evaluating the Newton correction. We show that the use of scaled three-term recurrence relations complemented with error free transformations yields some compensated schemes which significantly improve the accuracy of computed r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Science

سال: 2017

ISSN: 1877-7503

DOI: 10.1016/j.jocs.2016.12.004